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A NOTE ON OVERDISPERSED EXPONENTIAL FAMILIES

A. E. Gelfand

S. R. DalaI

Summary

The issue of creating overdispersion in a given one parameter one dimensional exponential

family, by extending it to a two parameter exponential family with the same support, is

considered. An easily verifiable sufficient condition for this is derived. It is shown that a large

class of families satisfy this condition and that this class includes Efron's (1986) and Lindsay's

(1986) family as special cases. This class is also closely related to Jorgensen's (1988)

Exponential Dispersion Models. UMP unbiased tests for testing overdispersion are exhibited

and it is shown that in this context Cox's overdispersion test is a special case. A graphical

display is developed to select a family of the general class which should be used with a given

set of data to overdisperse a given target one parameter family. Two real data illustrations are

given.

Keywords: Exponential family, overdispersion, exponential dispersion model, weighted least

squares fitting, graphical displays for discrete models , '
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1. Introduction

Overdispersion as an issue has been recognized by data analysts for many years. Samples

are often found to be too heterogeneous to be explained by a one parameter family of models in

the sense that the implicit mean-variance relationship in such a family is violated by the data; the

sample variance is large compared with that predicted by inserting the sample mean into the

mean-variance relationship. The natural remedy is to consider a larger collection of models, say

a two parameter family. Historically the most frequently used means of doing this has been to

mix the one parameter family with a two parameter family creating a two parameter marginal

mixture family for the data. At the same value of the mean such mixing typically inflates the

model variance. In fact Shaked (1980) shows that for a one parameter exponential family this is

necessarily the case. Cox (1983) noted that for modest amounts of overdispersion a full

specification of the mixing distribution was unnecessary; only its mean and variance (two

parameters) are needed.

Does the assumption that the one parameter family is an exponential family, whence the

mean-variance relationship (usually called the variance function) is immediately available

through the normalizing function, enhance our ability to do modeling and inference for

overdispersion? We argue that the answer is yes by developing a general class of two parameter

exponential families which are overdispersed relative to a given one parameter exponential
r

family. Customarily, the one-parameter exponential family has been mixed with a two
0

parameter conjugate distribution (see e.g., Morris, 1982). The resulting overdispersed family of 0

mixture models will often be awkward to work with since it will not be an exponential family.

Hence straightforward optimal inference may be sacrificed. To model overdispersion Efron -
v' Codes

(1986) creates a sc callel !ouble exponential family using Hoeffding's representation of a one id/or-__ _ __ _ _ _ __
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parameter exponential family through the Kullback-Leibler distance. In fact this family is a two

parameter exponential family whose normalizing function has a very simple approximate form.

Efron's arguments are all asymptotic relying upon the assumption that each observation is itself

an average of a large number of observations. For any fixed sample size Efron's family is a

special case of ours and therefore asymptotics are not needed to argue for overdispersion.

Lindsay (1986) addresses the slightly different question of whether mixing a one parameter

experimental family can produce a two parameter exponential family. He shows that using so-

called reweighted infinitely divisible families as mixing distributions will achieve this. Again,

our general two-parameter family includes Lindsay's. Within Jorgensen (1987) the one

parameter exponential family is extended to a two parameter class of distributions which is

called an exponential dispersion model (EDM). Extending our two parameter family to account

for sample size yields a class of models having two interesting features. First this class is

overdispersed relative to Jorgensen's two parameter EDM. Second this class is itself

approximately an ED? 1.

In section 2 we offer our basic results. In section 3 we comment on sampling models by

introducing sample size into our family. Finally in section 4 we develop a UMP unbiased test

for overdispersion, propose a graphical display and illustrate our methods with two examples.

2. Basic Results

Consider the two-parameter exponential family P, baying densities, with respect to some a-

finite measure G, of the form

PWoer th Y) = expni y + 't Tao )- p(S yt)} (2.1)

We write expectations under this densi y. using the notation E (S(y) 0,,t). We presume that the
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natural parameter space contains a two-dimensional rectangle which, by translation, can be taken

to contain 'r = 0. We denote the one parameter model at = 0 by

P 9(Y) = exp {Oy - x(O)) (2.2)

In (2.2), the "normalizing function" X(O) is, in fact, the log moment generating function of G

with X'(0) a g the mean of Y, and X"(6) the variance. Since X'(') is strictly increasing, it has a

unique strictly increasing inverse function, say, 0 = TI().

In (2.1) let p(rs)= ap l+/a T ,r,s 0. We recall that p(l.0)= E(Y 1 0,t),

p(2°)=var(Y I 6,r), p 2z')=E(Y-E(Y))2 (T(Y)- ET(Y)) I 0,,) etc. In the sequel we

suppose in (2.2) that corresponding to 00 the mean is po. In (2.1) defire 0,(t) by the implicit

function E(Y I 0, ') = P0 i.e., Og() indexes the curved subfamily of (2.1), P9, where the mean

is PO.  Implicit differentiation yields 60(t) = - ((a E (Y 1 0, t) / t) /

(D E (Y 1 0, ) / 0)) I . i.e.,

0p(c) = -cov (Y,T I 00.(t),c) / var (Y I 0,(t),r) (2.3)

Thus, by the association inequality if T is monotone 0,(,) is.

As a definition the family of models (2. 1) is said to be overdispersed relative to the family of

models (2.2) if, keeping the means fixed in (2.1) the variance increases in '. More precisely, we

mean that for each subfamily, T,,var (Y) increases in 't. Defining g,(T) = E (y 2 I 0(t), t), a

sufficient condition for such overdispersion is g g'(t) > 0 for '% > 0. Underdispersion is defined

by requiring var (Y) decreasing in -t for each P . with sufficient condition g (t) :_ 0 for 'I > 0.

Underdispersed models rarely occur in practice.
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Lemma 2.1 provides a convenient analytic expression for g

Lemma 2.1

g (.) = coy (Y 2 , T) - coV (YY 2) cov (Y,T) / var (Y) (2.4)

where expectations are taken at (0 ('t),t) in (2.4) and in the proof.

Proof: Differentiating under the integral sign we have

g'(z)=O( t)E (y 3)+E(Y2 T(Y))- (dp(60,(t),t)/d r) E(Y 2). Using (2.3) and the fact that

d p(0m(t), ) / d 't = ep(t) E (Y) + ET (Y) with simple manipulation yields (2.4).

We rote tiat fr arbitrary members of !P the right hand side of (2.4) may be expressed in

terms of derivatives of p:

cov (y 2 , T) - cov (Y , Y 2)cov (Y,T) / var (Y) = p(2-1) - p(3.0) (p(.1) / p( 2O)) (2.5)

We now state our basic result.

Theorem 2.1: A sufficient condition that family (2.1) is overdispersed relative to family

(2.2) is that T (y ) is convex.

The proof of the result directly follows by Lemma 2.2 taken from Dalal, Kemperman and

Mallows (1988).

Lemma 2=: Let S I and S 2 be both convex or both concave functions. Then for any random

variable Y

cov(S(Y) ,S 2(Y)) var(Y) > cov(Y ,St(Y)) cov(Y ,S 2(Y))

If Y has support at more than 2 points, the inequality is strict provided either S I or S 2 is

nonlinear. Lemma 2.2 immediately provides a sufficient condition for (2.4) to be positive thus
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proving the theorem.

An alternative proof of Theorem 2.1 arises from ideas contained in Shaked (1980). We may

easily deduce the following modification of his Theorem 1.

Lemma 2.3: Consider any pair of distinct densities f and g with respect to some

dominating measure v. ff I g is convex and Ef (Y) = Eg (y) then the number of sign changes

for f - g is two and the sequence is +,-,+.

The conclusion of Lemma 2.3, again with Ef (Y) = Eg (Y), implies that, provided

expectations exist, E- (W (y) E W (y) for all real convex W. (An elementary proof is given in

Schweder (1982)). Thus by taking W(y)=y 2 we have varf (y) > var, (y). Theorem 2.1 now

follows by choosing any two members of P ., identifying as f the one with the larger t. The

convexity of T (y) implies the convexity off g.

Indeed the convexity of T yields a somewhat stronger notion of overdispersion than our

definition since, within P., both of the proofs imply ordering by t of expectations of an

arbitrary convex function, i.e., for any arbitrary convex function S,

d /dt(ES (Y) I BOV(tr), -t) 2 0. This inequality allows for comparison of skewness, kurtosis, etc.

Writing Efron's (1986) family in the form (2.1) reveals T(y)=y (y)-X(n(y)) (71(y) is

defined below (2.2)).Hence T'(y)= l(y), a strictly increasing function, so his T is convex and

his family is contained in (2.1). Lindsay (1986) shows that the family (2.1) arises by suitable

mixing of (2.2) provided T is the log moment generating function of an infinitely divisible

family of distributions, equivalently provided T' is absolutely monotone. If our interest is in

overdispersion, we can allow the wider class of convex T's. This may serve to mitigate hib

concern (p.129) regarding finding T's such that exp(T(y)) is integrable wit:-. ' Sf,, to G. For
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instance T (y) = y !ogy is convex but T'(y) is not absolutely monotone on R +. This T is used

by Efron (1986) and in Section 4.4 below for the case when (2.2) is the Poisson family. Note

that if exp(y 2) is integrable with respect to G we may argue that (2.1) with t(y)=y 2

approximates, for T small, an arbitrary mixture of (2.2) provided the mixing

distribution has finite second moment. This follows directly from Cox (1983,p.272).

The following corollary to Theorem 2.1 quantifies the relative overdispersion of (2.1) to (2.2)

for 't small.

Corollary 2.1. If in (2.1) T is convex and t is small, positive then

var (Y I , (r),t 0) / V I= 1+ a r + 0 ( 2) (2.6)

where a = g (0) / V (o) > 0 with V (g) = (dri/d g)- 1, the variance function associated with

(2.2).

Proof. Write the numerator of the left hand side of (2.6) as g ,('t)- 2 and expand in a

Taylor series about t = 0.

We conclude this section by noting that in (2.1) the parameters r and Ig=E0,j(Y) are

orthogonal i.e. E a2logp 0:(y) / aot' = 0, as can be verified by direct calculation . See Cox and

Reid (1982) and Barndorff-Nielsen (1978, p.184) for further discussion.

3. Sampling Models and Asymptotics

To incorporate sample size into our models, suppose Z is the average over n independent

replications of (2.2). Then by convolution the density of Z becomes

f 0.,, (z) = exp fn (Oz - X(0))) (3.1)
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with respect to G., the corresponding convolution measure of G. That is, G., has log moment

generating function n X(O). Treating n in ( 3.1 )as a so-called dispersion parameter by allowing it

to range over the subset of R+ such that n X(0) is a log moment generating function for some

measure H., Jorgensen defines (3.1) to be an exponential dispersion model (EDM). Note that

this dispersion parameter is not related to our notion of overdispersion. In fact we wish to

formulate an overdispersed family of models relative to the EDM, (3.1).

Similar convolution of (2.1) does not produce an EDM. Here p(0, ') is the log moment

generating fanction of exp[- T(y)) d G (y) but n p(O, r) will generally not be the log moment

generating function of exp Jr T(y))d G,, (y). Rather the measure G, will depend upon t as well

as n. Instead consider the extension of (3.1), paralleling (2.1), to the family of densities with

respect to G, of the form

f 0.r.n (z) = expln Oz +mn'r T(z) -p (0,)) (3.2)

where again T is convex, p, is the normalizing function, and the sequence m, > 0 is to be

determined.

For fixed n hence rn, Theorem 2.1 shows that on curved subfamilies of (3.2) where the

mean, n - -, is held constant the variance will increase in t. Thus if we consider

independent replications of (3.2) with n constant (balanced samples), (3.2) serves as an

overdispersed family of models for (3.1) regardless of how mn is chosen. For unbalanced data

extending (3.1) to (3.2) will lead to n varying over independent observations from (3.2). In this

case we claim that the choice of mn matters and that m, = n is the appropriate choice.

Sampling from (3.1) with varying n is interpreted as drawing averages based upon differing
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sample sizes. Thus for (3.2) to suitably extend (3.1) the mean should be approximately constant

over n. With regard to overdispersion consider the usual mixture model approach. If we mix

(3.1) with some distribution H having mean H11 and variance ar, the relative overdispersion of

the resulting mixture distribution to (3.1) is (n-'EHV(g) + aY) / n-V(H) which tends to -as

n -- . That is, since the mixing distribution is assumed not to depend on n, taking additional

observations within a population does not increase our knowledge regarding heterogeneity

across populations. (An open extension of Lindsay's (1986) work is whether (3. 1) can be mixed

by a distribution free of n to produce a two-parameter exponential family. Our ensuing

discussion suggests that the answer is no.)

We now argue roughly that regardless of the choice of m., the models (3.2) can not produce

the "mixing type" of overdispersion relative to (3.1). They can achieve a limit for the relative

overdispersion which is a constant > I and this occurs only when m, = n. We note that such a

limit arises in Efron's (1986) formulation. The discussion by Kent to Jorgenson (1987) alludes

to this difference in "type" of overdispersion.

Suppose n is large with m, = n. Expanding p,, (0, 't) about -t = 0 we have for small T

p (o,0 - , (O , o) + ~ ( ,) T )

= n X(9)+ nE, (T(Z) I Z - fe.)

= n (X(O) +,t T(i)) + 0(l) (3.3)

where It = X'(0). The last equality follows by expansion of T (z) about pt. In fact we can take

additional terms in the expansion of p,, (6, t) and by similar argumentation eventually assert that

.o (0, t) can be expressed in the form



-10-

p, (0, r) = n f(0 , t) + 0(1). (3.4)

Then for large n clearly E, (Z I 0, "c) = CV so that the mean remains roughly constant across n.

In fact for n large, under (3.4), (3.2) will be approximately an EDM and thus enjoy the same

small dispersion asymptotics (see Jorgensen, 1987, p.135) as EDM's do. We note that Efron's

(1986) double exponential family is of the form (3.2) with mn = n and (3.4) holding. Moreover

we can extend our calculations of Section 2 to this case. The left hand side of (2.5) becomes

n-28(9, T) + o (n- 2) where _V, ) 2) - 1(3.°) 10.1) / V2-o). The relative overdispersion

(n-25(80, 0) + o (n -2)) n 't
(2.6) becomes 1 + + 0 (@2) which tends to a constant > 1. Thisn-V20(0 0)

argument generalizes Efron's Fact 2 (p. 711).

For a general sequence mr, (3.3) becomes

mnn (X(0) + -n r T (g)) + 0(1) . (3.5)
n

If m, =o(n), (3.5) is n X(O)+o(n) i.e. asymptotically (3.2) behaves like (3.1). If n =o(mn)

from (3.5) we see that upon differentiation, the mean of (3.2) will not be stable over n. In fact it

tends to a- as n -4 -. Thus m, = n is the unique choice producing overdispersion of (3.4)

relative to (3.1).

In Section 4 we confine ourselves to independent replications from (3.2) with n constant.

More interesting problems would fit (3.2) allowing n, 0, and 't to vary across independent

observations expressing, for the i th observation, 9i and 'ti through generalized linear models

(see McCullagh and Nelder, 1983). Like Efron (1986), this could be incorporated in our setting.
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4. Test and Displays for Overdispersion

4.1 UMP Unbiased Test

if Y 1, .. ,Yk are an independent sample from (3.2) then standard theory gives a UMP

unbiased test for overdispersion. That is, to test H 0 : r = 0 vs. HA : r > 0 we reject for

LT(Yi) > c(j) (4.1)

where = Yi /k. Recall that the MLEs for p,tr solve p(.0)=j, p(,O,1) =IT(Yi)/k. Since

p(0.1) increases in 'r we must have 'r increasing in IT(Yi) for fixed gl. We may write (4.1) as

't > d (.). The concluding remark of section 2 shows that for k large p. and i are approximately

independent. Thus the unconditional test based upon the asymptotic normal distribution of "t

under H 0 will be approximately UMP unbiased. As Cox and Reid (1987, p.2) note, the

asymptotic standard error of 't is the same whether p. is known or not. In the special case

T(y) =y 2, (4.1) can be written in the appealing form

I(Yi -Y) 2 > c(Y) (4.2)

capturing our informal notion of overdispersion. In fact under the family (3.2), (4.2) is

essentially Cox's (1983, p. 272) test for overdispersion.

4.2 Graphical Displays

We consider the case where (3.2) is a distribution on the nonnegative integers. Extension to

continuous distributions could be similarly developed by partitioning the domain of Y into

intervals. Our approach has its roots in the work of Gart (1969) and Ord (1970). These papers

investigate standard overdispersion cases e.g. Beta Binomial to Binomial, Negative Binomial to

Poisson, Binomial to Hypergeometric. Suppose then the class of models
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Po.t(Y) =h(y)exp(Oy +tT(y)-p(0,c)), y =0,1,2.... (4.3)

P e.(Y) a density with respect to counting measure. How might we develop a display to see the

presence of overdispersion and to suggest a good T? We do not view this as an optimality

problem. Allowing varying convex Ts in (4.3) would, for appropriate 6, 'r, yield comparably

fitting models. If Y 1, . . Yk are a sample from (4.3) definty to be the observed proportion of

Ys equal to y. Lindsay (1986) suggests examination of the log residual ry = log(fl/pd.(Y))

where b is the MLE under (4.3) when -t = 0. Suppose p o, 0, ,(to) are the true parameter

values. Since iy = p e,(V. (y) + OP (k - 2) and 8= 01o (0) + Op (k-l r ) we can show that

r, ={00(to)-0 (0)} y + 'yT)+ X(,(0))-p(011(to), ,t0 ) + Op (k-1/2). (4.4)

If we could remove the linear term in (4.4) we might more easily see whether t > 0 i.e. see the

presence of overdispersion. Let

SY = log [fyh)/(Yh (y +1)))}.

Then analogous to (4.4) we can show that

sy = 0go(t0) +,'to {Z(y+1)-T0,)} + OP (k -1/2z  (4.5)

The linear term has been removed. Since, for T convex, T(y+1)-T(y) increases in y, sy

should be increasing in y if overdispersion is present. An analogy here to unadjusted and

adjusted (or partial) residual plots is noteworthy. A plot of ryvs y corresponds to the former; a

plot of sy vs y to the latter. The latter display should be more effective in seeing overdispersion.

Moreover since T(y+l)-T(y) behaves like T'(y) this plot allows us to readily see trends in T'

and thus to suggest candidate T's. Note that because sy is a function of two dependent random
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variables (as is ry,) successful use of such displays will require k large and suitable truncation of

y. Since our effort here is exploratory this should not cause concern.

4.3 Fitting the Model

Fitting of models (4.3) and the goodness of such fits is discussed extensively in Lindsay. In

general ML estimation is unattractive because the normalizing function is usually not available

in closed form. Weighted least squares is a straightforward alternative. We have investigated

both ly = log (y / h (y)) and sy (Lindsay uses r,). Let m + 1 be the smallest value of y such that

=0. For (y we minimize

7, Wy (ty - (8y + r T(y)+c} (4.6)

y-O

over 0, 't and c where wy =ify /(I -fy). For sy we minimize

M-1Y, wy {sy - (0 + T(T(y + 1) - (y)} (4.7)
y=0

over e and T where wy =/6y,, / 5y +1 +6y ). The weight wy is (up to a constant) the reciprocal

of the estimated variance of ty and sy respectively. We ignored the covariances in the fitting on

two grounds. First, Lindsay's theoretical work (Theorem 4.1) shows that the least squares

estimates resulting from (4.6) are asymptotically efficient if the domain of (4.3) is bounded.

Second, for the two data sets in section 4.4 the full covariance matrix amongst the ry or amongst

the sy can be estimated by the delta method. For both data sets for ty and for sy the diagonal

terms dominated the estimated inverse.

When using sy, 6 and i immediately provide estimates of pg.j.) in (4.3) up to the

normalizing constant. This constant is then computed terminally to correctly standardize the
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fitted cell probabilities. When using y, e estimates the normalizing constant but in fact once B

and iE were obtained we ignored e. Rather we again calculated c terminally to standardize.

Comparison between observed and fitted was done using Pearson's chi square statistic.

When using y we have m + 1 cells with 3 parameters; when using sy we have m cells with 2

parameters. Thus in either case m - 3 degrees of freedom are associated with the goodness of fit

statistic. Intuitively we might expect poorer fitting using the sy. They are the log of a ratio of

random variables and would thus be expected to be more variable than the (y. This is perhaps

borne out for the second data set in section 4.4.

4.4 Two Examples

The data in Table I is taken from Sokal and Rohlf (1973, p.67) and has been examined by

e.g. Shaked (1980). It consists of the frequency of males in 6115 sibships of size 12 in Saxony,

1876-85. Taking an initial binomial model the overall I =.519, nj(1-5)=2.996 while

S 2 = 3.490 suggesting overdispersion. The UMPU test for overdispersion using (4.2) with a

normal approximation is extremely significant. Figure 1 plots sy vs y revealing the expected

increasing pattern. In fact since Figure 1 reveals a roughly linear relationship T (y) = y 2 is

suggested. Fitting using y produced 0=-.2585, i = .0265; the fitted probabilities are given

under 41) in Table 1. Fitting using sy produced 6= -. 2463, = .0260; the fitted probabilities are

given under pa ) in Table 1. The fits are very close and both are excellent. For p,(l) X2 = 15.41,

for pY(2) X = 14.54 with d.f. = 10.

The data in Table 2, originally collected by Thyrion (1961) is taken from Seal (1969) and has

been analyzed by Lindsay (1986) and others. It consists of observed counts of accidents in a

year for 9461 Belgian drivers. Taking an initial Poisson model 1= .0214 with $2 = .0289
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suggesting overdispersion. Figure 2 plots sy vs. y supporting this. In this situation integrable

choices for T(y) are limited. For example T(y)=y 2 or T(y)=(y+l)log(y+l) are not.

T(y)----e -Y was used by Lindsay. We use T2(y)=y logy which arises from Efron's (1986)

"double Poisson" example. Figure 2 suggests that T' is possibly concave which is satisfied by

both T, and T 2. (Experimentation not presented shows that for T2, (4.3) resembles, except in

the far tails, a negative binomial distribution). Fitting using 4y produced 6= -1.833, i = .7546;

the fitted probabilities are given under py(1) in Table 2. Fitting using sy produced

0= -1.792, "r = .6322; and the fitted probabilities are given under p (2) in Table 2. The fits are

similar. The goodness of fit test collapsing y a 5 has 3 d.f. For p(l) X2 = 25.92, for

PY(2) X2 = 40.76. While Lindsay's fits (p.131) appear to be better the comparison is unfair since

he has really employed a 3 parameter model. In any event our discussion shows that Efron's

family may not be adequate and that allowing more general convex T increases Lindsay's

possibilities.
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Table I

Sibship data (Sokal and Rohlf, 1973) with fitted probabilities

Observed
y Counts Py P

0 3 0.0005 0.0004 0.0004
1 24 0.0039 0.0037 0.0038
2 104 0.0170 0.0171 0.0177
3 286 0.0468 0.0508 0.0520
4 670 0.1096 0.1073 0.1088
5 1033 0.1689 0.1696 0.1706
6 1343 0.2196 0.2058 0.2057
7 1112 0.1818 0.1934 0.1922
8 829 0.1356 0.1395 0.1380
9 478 0.0782 0.0754 0.0743

10 181 0.0296 0.0290 0.0285
11 45 0.0074 0.0071 0.0070
12 7 0.0011 0.0008 0.0008

Table 2

Accident data (Seal, 1969) with fitted probabilities

Observed
y Counts VP

0 7840 0.8287 0.8286 0.8282
1 1317 0.1392 0.1325 0.1380
2 239 0.0253 0.0302 0.0276
3 42 0.0044 0.0068 0.0051
4 14 0.0015 0.0015 0.0009
5 4 0.0004 0.0003 0.0001
6 4 0.0004 0.0001 0.0
7 1 0.0001 0.0 0.0
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